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We compare the performances of a Cox model and a
neural network model that are used as prognostic tools
for a cohort ofpeople living with AIDS. We modeled dis-
ease progression for patients who had AIDS (according
to the 1993 CDC definition) in a cohort of588 patients
in California, using data from the ATHOS project. We
divided the study population into 10 training and 10 test
sets and evaluated the prognostic accuracy of a Cox
proportional hazards model and of a neural network
model by determining the number of predicted deaths,
the sensitivities, specificities, positive predictive values,
and negative predictive values for intervals of one year
following the diagnosis ofAIDS. For the Cox model, we
further tested the agreement between a series of binary
observations, representing death in one, two, and three
years, and a set ofestimates which define the probability
ofsurvivalfor those intervals. Both models were able to
provide accurate numbers on how many patients were
likely to die at each interval, and reasonable individual-
ized estimates for the two- and three-year survival of a
given patient, but failed to provide reliable predictions
for the first year after diagnosis. There was no evidence
that the Cox model performed better than did the neural
network model or vice-versa, but theformer method had
the advantage ofproviding some insight on which vari-
ables were most influential for prognosis. Nevertheless,
it is likely that the assumptions required by the Cox
model may not be satisfied in all data sets, justifying the
use ofneural networks in certain cases.

PROGNOSTIC CLASSIFICATION
Quantitative tools that model disease progression and
that provide predictions of survival are essential for the
provision of care and the design of adequate health-care
policies. The simplest models for survival analysis use
actuarial life tables or Kaplan-Meier product-limit esti-
mators. Parametric models of survival are also been
used, where the restrictive assumption of a fixed distri-
bution is traded for efficiency and facility of mathemati-
cal manipulation. These methods include Markov and
accelerated failure time models.' A few authors used
more complex nonparametric methods, such as classifi-
cation trees and neural networks.2 Traditional survival
analysis tools, such as the Cox proportional hazards
method3, are often used in the exploratory phase of the
development of staging systems. However, the ade-
quacy of these methods for the development of prognos-
tic classification of individual patients has not been
effectively assessed. Most of these methods are aimed at
explaining the progression of the disease, by selecting
influential variables, rather than the predicting survival
for populations or individual patients. Neural networks
have been used successfully for building prognostic sys-
tems, and provide an alternative to the Cox model. The
performances of both methods have not yet been experi-
mentally compared.

An important requirement for a classifier is its ability to
use as much information as it can on an individual case
to make accurate predictions. In the domain of HIV
infection, the Cox proportional hazards model is fre-
quently used to study the importance of covariates for
survival, but is seldom used to produce survival prog-
noses. The Cox model is a multiple logistic regression
semi-parametric model that allows modeling of continu-
ous covariates, and involves the assumptions that there
is a simplifying transformation of the initial data and
that the hazards for the different groups are propor-
tional. The model assumes a baseline hazard and haz-
ards for individuals with certain variable values are
multiples of that baseline, as shown in

h,#) = h0(t)eziO
where hi(t) is the hazard for individual i at time t, ho(t) is
the baseline hazard at t, z is the vector of explanatory
variables and P is the vector of coefficients for each
variable. In order to provide predictions of survival for
individual patients, a baseline hazard that is common to
all patients has to be estimated. This estimation repre-
sents no trivial task and the choice of the wrong baseline
hazard can change the results of the predictions dramati-
cally.
When the task is to establish predictions of survival for
individual patients, neural networks constitute good
alternatives for classical statistical methods. Neural net-
works used for this purpose are nonparametric models
that allow modeling of a large number of non-linear
functions.4 Their advantage is that few assumptions
have to be made about the distribution of the data. Their
main disadvantage is that they provide little insight on
which variables are most influential in the model. Esca-
lating health-care costs related to the prevention and
treatment of HIV infection call for policies that are
derived from existing data using reliable quantitative
tools.5 In this paper, we show how we used data from an
existing database ofAIDS patients and used two mathe-
matical models to determine prognosis of death due to
AIDS.
Prognosis ofAIDS
The economic effects of the AIDS epidemic have deeply
influenced the development of health care policies and
the practice of medicine. HIV infection is one of the
most challenging public health problem that has arisen
in the second half of the twentieth century. It is impor-
tant to know the natural history of the disease, to predict
the development of the disease in HIV+ individuals, to
establish national policies to slow disease progression,
and to establish guidelines for adequate medical inter-
vention. Certain markers both may be easy to obtain in
primary-care settings, and may provide valuable infor-
mation for making prognostic distinctions.
Prognostic evaluations of patients who are HIV+ can
help both patients and physicians to plan treatment and
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to allocate resources. Prognostic distinctions can help
researchers to design clinical trials, by allowing them to
stratify groups according to one measure of potential
therapeutic benefits.6 The classification of patients
according to different disease-progression profiles also
helps the policy maker to determine the nation's health-
care needs and to assess the global influence of preven-
tive and therapeutic interventions. Several authors have
modeled transitions from seronegative to seropositive
HIV, from asymptomatic HIV+ status to symptomatic
HIV+ status, from HIV+ status to AIDS, and from AIDS
to death, as shown in Figure 1. In this study, we have
modeled the transition from AIDS to death.

ure 1. Modeling disease progression in HIV infection.
HIV- )
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Mathematical models have been constructed to model every state transi-
tion in HIV infection. In this paper, we built survival models for the transi-
tion from AIDS to death.

MATERIALAND METHODS
Data source: ATHOS database
The ATHOS database is a prospective, longitudinal, pri-
mary data set of HIV+ and at-risk subjects, collected
from 10 clinics in California (3 private practices in the
San Francisco Bay Area, 2 private practices in Los
Angeles, and 5 community clinics associated with the
Owen Clinic at UCSD).7 The ATHOS database was built
to provide a national HIV data resource that permits the
systematic study of (1) disease costs and financing, (2)
drug effectiveness, toxicity, and cost, (3) delivery sys-
tems and practice variations, (4) health status and qual-
ity of life, and (5) disease transitions and modeling. The
data collection began in 1989 at Stanford University.
Some authors have used the ATHOS database to assess
the socioeconomic impact of the AIDS epidemic,8 as
well as to investigate medical issues related to HIV
infection. Researchers of the ATHOS project have
developed quality-control protocols that assure the reli-
ability ofATHOS data. Approximately 50 percent of the
patients have AIDS (1993 CDC definition ), 25 percent
are HIV+ but do not have AIDS, and 25 percent are
HIV-, but at risk for HIV infection. There were 290
deaths and 572 diagnoses of AIDS through mid-1993.
Figure 2 shows the distribution of patient cases accord-
ing to clinical stage and ethnicity.
Figure 2. Approximate distribution of ATHOS patients

according to clinical stage and ethnicity.
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Data from 1056 patients who had AIDS were available
for this study and over 700 variables were represented.
The variables included diagnoses, signs and symptoms,
results of laboratory tests, medications, and variables to
assess functional status, quality of life, insurance cover-
age, medical resources utilization, side effects, and mul-
tiple health outcomes. Data were collected in three-
month intervals, by means of questionnaires and sum-
marization of clinical progress notes.
Statistical Methods
Specification ofcovariates and outcome. The major end-
point in this analysis was mortality due to AIDS-related
conditions from the date of diagnosis by the 1993 CDC
definition. Only 588 records were selected for this study
because they had the necessary information on the date
ofAIDS diagnosis by the CDC definition. Demographic
and socioeconomic explanatory variables included age,
gender, race, risk group, AIDS-defining diagnoses, hos-
pitalizations, educational level, and average income.
Clinical findings included fatigue, weight loss, diarrhea,
mental status, and Karnofsky scores. Laboratory test
results included CD4 counts, CD4/CD8 ratio, hemoglo-
bin, erythrocyte sedimentation rate, erythrocyte and
platelet counts, white blood cell counts, serum p24 anti-
gen, serum f-2 microglobulin, total cholesterol, HDL,
and albumin levels. Variables indicating antiretroviral
and prophylactic medications for opportunistic infec-
tions were used. Continuous variables were represented
as standard deviations from their means. Dummy coding
was used for categorical variables, with "0" indicating
absence and "I" indicating presence of a certain charac-
teristic. In cases where there were missing data, values
representing either the mean or the mode were entered.
Data Set Construction. Because the number of observa-
tions was not very large, we used the leave-n-out tech-
nique to assess the predictive ability of our model. To do
so, we divided the whole set of patients into 10 groups,
by systematically classifying them according to the last
digit of the database record number. Therefore, all
patients with record numbers containing "0" as the last
digit were grouped in the first set (Group 0), all patients
with record numbers containing "I" as the last digit
were grouped in the second set (Group 1), and so on.
The training set was composed of those records left
behind after each group was selected. For example,
when Group 0 was selected as the test set, all other
records containing last digits different from "0" would
compose the training set and would be used to build the
model. This process was repeated 10 times, so that every
group was used once as a test set, and all patients were
tested. We consequently had 10 different training sets,
and needed 10 different models for each method (i.e.,
Cox Proportional Hazards, and Neural Network), as
shown in a simplified form in Figure 3. For the Cox
model, a survival curve for each patient in the test set
was created. Using an arbitrary cutoff value (0.5), we
considered a patient dead at a given interval if the prob-
ability of survival fell below the threshold. The "gold
standard" was the information about survival contained
in the actual records.
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Figure 3. Training and test sets.
(a) Grouping by final digit of record #.

Cox Model. We built a Cox proportional hazards model
using the PHREG procedure in SAS.10 Variable selec-
tion was done using a stepwise process, in which the
significance level of both entry and permanence of a
given variable in the model was 0.05. Ties were handled
by the Breslow method. Estimation of the survivor func-
tions at event times were performed using the baseline
statement in SAS. Ten models were constructed using
the Cox model to evaluate the ten test sets. A full model,
containing all cases, was also constructed in order to
determine whether the combined results of the ten mod-
els were compatible with the whole data set with respect
to the variables selected, their coefficients, and relative
risks. The full model was not used for evaluation.
Neural Network. The neural network used exactly the
same sets as the Cox model, except that the output was
categorical: Instead of providing a duration of survival,
represented by a real number, the output was composed
of four binary variables indicating death at a given inter-
val, as shown in Fifure 4.
The PDP software was used to develop the neural net-
work model. Initial weights were random. The learning
rate was 0.01. The network was trained by backpropaga-
tion using a cross-entropy error function for each output
node, represented by

E = -,IYjlogp,+ (I - Yi)log (I -Pi)]
where Yi is the target, or desired output, and pi is the
actual output produced by the network for each individ-
ual i. Minimizing this function is the same as perform-
ing maximum likelihood estimation.11 The outputs of
this network can be interpreted as a crude estimate of

the probability that a given patients dies in a given inter-
val (and not the probability that a patient is dead at this
interval, which is the number that is easily derived from
a survival curve, and therefore is the number that we are
ultimately seeking). The probability that the patient is
dead at a certain interval would then be the probability
that the patient died at that given interval, plus the prob-
ability that the patient died in the interval that preceded
the one in question. For example, if the network pro-
duced probabilities of 0.1, 0.3, 0.2, 0.4 that a patient
would die in the first, second, third and fourth interval,
respectively, then the actual probabilities of that patient
being dead in those intervals would be 0.1, 0.4, 0.6, and
1, representing a monotonically increasing function. We
analyzed the results for the first three intervals. The net-
works were trained until the error in the test set started
to increase.
Figure 4. Neural network architecture.

Age
Gender
Risk group*
AIDS-Dx*
Ethnicity*
Fatigue
Weight loss
Diarrhea
Mental Status Dah<1yaKarnofsky Death c 1 year
CD4 1 y CDeath 2 y
CD4/CD8
Hemoglobin 2y < Death < 3 y
ESR
RBC Death > 3 years
Platelets
WBC
p24 antgen
Cholesterol
HDL
Albumin
I2 microglobulin
Anfiretroviral Rx
Prophylaxis 0.1.

Variables marked by a are composed of several binary variables. For
example, Risk Group is composed of Gay/Bisexual, IVDU, Heterosexual,
and Transfusion recipient AIDS-Dx is composed of PCP pneumonia,
Kaposi sarcoma, and so on.

Evaluation. The methods were compared for total accu-
racy, sensitivities, specificities, and positive and nega-
tive predictive values for each interval. All results reflect
a significance level of 0.05 for the combined results of
all ten test sets, representing 588 patients. The Cox
model was also assessed by a x2 test, described below.

RESULTS
Explanatory Variables. The stepwise procedure in the
Cox model selects variables according to their x2 statis-
tics, by allowing them to enter the model if their p-val-
ues are below a certain threshold. The variables selected
by the stepwise procedure are shown in Table 1, were 0
represents the mean coefficient obtained from the ten
models, and P' represents the coefficient for the full
model. The first variable to enter the model was Length
of Stay in Hospital, or LOS, representing the previous
hospitalizations of a patient. This variable was entered
in all models, together with PCP Pneumonia, and Other
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AIDS-defining Diagnoses. CD4 count was entered in
nine of the ten models, and p24 antigen in eight. The
variable that indicated Hispanic ethnicity was entered in
six models, and was not entered in the full model.
Table 1. Variables selected by the Cox model.

'..E-..0--:-:."' ,, '-'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......
~~~~~~~~~~~~~~.. ..

PCP pneumonia 1.12 1.32 3.08 3.73
Kaposi sarcoma 0.74 0.86 2.09 2.36
Other AIDS-defin. Dx 0.90 1.06 2.47 2.89
LOS 0.18 0.18 1.19 1.19
CD4 count -0.33 -0.35 0.66 0.70
p24 0.36 0.55 1.44 1.73
The average coefficient for each selected variable of the ten models is
shown under P. The coefficients for the full model are shown under ,B'.
The average relative rsk for each varable of the ten models in shown
under RR. The relative rsks of the full model are shown under RR'.
Missing data for laboratory values of CD4 count and
p24 antigen titers in a three month interval around the
diagnosis of AIDS were present in 200 and 483 cases,
respectively. We built survival curves for each patient
using the survivor estimates produced using the baseline
hazard. An example of these curves for the first ten
patients is shown in Figure 5.
Figure 5. Survival curves for 10 patients.

a
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We built survival curves for each patient. The first ten patients are repre-
sented in this example. Three groups with similar survival curves, repre-
senting similar prognoses, were found in the whole data set.

Performance on a population. In the assessment of dis-
ease progression and health-care needs for the whole
population, it is sufficient that the prognostic tool pro-
vides prediction on how many cases are likely to die at
each interval, as opposed to which specific patients are
likely to die. To assess the performance of the systems
on the average of patients, rather than on each individual
patient, it is enough to use a statistic that compares the
true number of deceased in each interval and the esti-
mate provided by each model. This statistic is simply
the difference between the true number of deaths EYand
the sum of probabilities derived from each system £p,
divided by the square root of the variance p(J-p), and
has an approximately normal distribution. For all inter-
vals and both systems, the differences were not statisti-
cally significant (for a = 0.05), showing that both
methods were able to provide accurate numbers on the
average population.
Performance on individual cases. We obtained probabil-
ities of death at the end of a given interval and built a
classification table for each interval and each method.

The results are shown in Table 2.
Table 2. Performance of both methods on individual cases.

Cox Model Neural Network
<*l year 519 60 4 5 5071 56 8 17
< 2 years 422 118 32 16 388 93 57 50
< 3 years 307j 135| 94I 52 287| 99 1301 72
True negatives and false negatives are represented by TN and FN,
respectively. True positives and false positives are represented by TP
and FP A prediction was counted under TN when the system predicted
survival for a given interval, and the patient indeed survived the period
corresponding to that interval. A prediction was counted under TP when
the system predicted that the patient would be dead in a given interval,
and he indeed died before the end of that interval, and so on.

Total accuracy, sensitivities, specificities, positive and
negative predictive values were derived from these
tables. The results show a poor prediction capability for
both models in the first interval. From the survival
curves of the Cox model, it is easy to see that the predic-
tion of prognosis in the first year is indeed more difficult
than in the second or third years (the curves are very
close to each other in the first interval). Furthermore,
few patients (11%) died in the first interval. Both the
neural network and the Cox model were good at dis-
criminating patients who would survive after three years
of disease (percentage of correct cases of 0.68 and 0.70,
PPVs of 0.69 and 0.74, NPVs of 0.64 and 0.64, for the
Cox and Neural Network models, respectively). For the
interval of two-years after diagnosis, the performance of
both systems was also good (percentage of correct cases
of 0.77 and 0.76, PPVs of 0.66 and 0.53 and NPVs of
0.78 and 0.80, for the Cox and Neural Network models,
respectively).
Assessment of Probabilities. Since the Cox model pro-
duces true probabilities of survival for each interval, we
could also assess its predictive ability on individual
cases by using a technique provided by that author. 2 Let
p represent the probability of survival in a given inter-
val, as predicted by the model. We simply form k sub-
groups with nearly constant p and compare the
proportion of successes in each subgroup with the true
number of successes in that subgroup, by using a X2 test,
with k-I degrees of freedom. We obtained X2s of 13.49,
13.85, and 16.97, indicating that the predictions
obtained were compatible with the data for all intervals.

DISCUSSION
Survival analysis methods are seldom used to establish
prognostic classification of individuals or of groups of
patients. Using a Cox model and an estimate of a base-
line hazard, we were able to provide reliable predictions
for the number of patients who were likely to die at
intervals of one year after diagnosis of AIDS. The Cox
model was also used to explain which variables were
most important for the prognosis of AIDS. The ten Cox
models obtained by the leave-n-out procedure seemed to
agree with the full model regarding which variables are
most important for the prognosis ofAIDS and in which
order they entered the model. Especially for the most
influential variables, such as LOS and PCP pneumonia,
the values for the coefficients did not differ by a large
amount. The abundance of missing values for laboratory
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markers may have determined the absence of other
variables in the model. The survival curves provided
by the Cox model seemed to define three distinct
prognostic groups. It is still necessary to test these
models in different samples of the population to deter-
mine whether the results are generalizable.
Both the Cox model and the neural network methods
produced good estimates on the average number of
individuals who were likely to die at each interval.
However, the predictions of both methods for the
prognosis of a particular individual were only reliable
for the intervals of two and three years. The number
of cases in this study was not small, but we believe
that the significant amount of missing data contrib-
uted to the somewhat poor predictions provided by
the systems for the first interval, where the number of
examples was smaller. A more complete data set may
be able to answer this question. An additional prob-
lem with the Cox model may have been the departure
from the proportionality assumption. Hanson et al."3
described a cohort of HIV+ patients for whom the
assumption of hazard proportionality did not hold.
For these cases, fully nonparametric models of sur-
vival that allow non-proportional hazards are needed,
and neural networks may indeed perform better. We
plan to stratify the data according to the variables
selected by the Cox model and test the proportionality
assumption. Another approach for establishing prog-
nosis is to use the pooled-logistic regression
method. 14
A problem with the neural network was that it was
presented with less information than was the Cox
model, due to the transformation of the output into 4
discrete categories. Nevertheless, its sensitivities and
specificities were not too different from those of the
Cox model. Both methods presented very low figures
for sensitivities, especially for the first interval. By
using a hierarchical system of neural networks,15'16 it
may be possible to enhance the sensitivity to that pat-
tern without decreasing specificity. Since each
method has its own advantages and disadvantages, it
seems natural to try to combine them to build a more
accurate prognostic tool, so that, for example, we use
the Cox model to select the variables and then apply a
neural network that uses only those variables deemed
significant by the Cox model to provide prognostic
distinctions.

CONCLUSION
Current survival analysis methods are rarely used to
provide prognostic predictions of survival for individ-
ual patients. New methods, such as neural networks,
can constitute good alternatives for the development
of prognostic systems, especially when certain
assumptions about the distribution of the data cannot
be verified. We developed two computer-based sys-
tems, one based on the Cox proportional hazards
model and another based on neural networks to do the
prognosis of people living with AIDS. We showed
that the differences in performances of both methods
for predictions for the whole population and predic-
tions for individual cases were not significant, and

concluded that both methods can be reliably used for
prognostic classification.
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